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ABSTRACT

In this paper, three-dimensional finite element method
(FEM) is employed in conjunction with first and second-order
absorbing boundary conditions (ABCs) to analyze waveguide
discontinuities and to derive their scattering parameters. While
the application of FEM for the analysis of MMIC structures is
not new, to the best of the knowledge of the authors the
technique for mesh truncation for microstrip lines using the
first and higher-order ABCs, described in this paper, has not
been reported elsewhere. Numerical solutions for two
representative waveguide discontinuities are obtained and
compared with published data.

INTRODUCTION

The design of monolithic microwave integrated circuits
(MMIC) and electronic packages requires a knowledge of the
broadband frequency response of various microstrip
discontinuities. Because of the complexity of these
discontinuities, it becomes necessary to use numerical
modeling to compute their scattering parameters, and the finite
element method (FEM) provides a very effective tool for such
modeling. Two recent advances in the FEM analysis,

. described below, have made it even more attractive than it has
been in the past. The first of these is the introduction of vector
or “edge” elements, which maintain the tangential continuity of

the electric and magnetic fields E and H, respectively, and
annihilate spurious solutions. The second is the use of local
type of absorbing boundary conditions [1], which retain the
sparsity of the FEM stiffness matrix. Although FEM has been
employed in the past in conjunction with ABCs to solve
various electromagnetic scattering problems, to-date this
approach has not been utilized for full-wave analysis of
microstrip and MMIC structures that require different ABCs
than those employed in free-space scattering problems,
because of the wave guiding nature of the microstrips. In this
paper we present a full-wave analysis of complex microstrip
discontinuities, based upon the edge-element FEM formulation
and first and second-order absorbing boundary conditions,
specially designed for microstrip structures, for mesh
truncation.

FORMULATIONS USING ABCS

A typical microstrip discontinuity configuration is
shown in Fig. 1. The volume Q represents the truncated
solution domain containing an arbitrarily-shaped, three-
dimensional discontinuity. The open surfaces of €2 may be
divided into two types, viz., the terminal planes and the side
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Figure 1.  The truncated solution domain containing arbitrary, three-

dimensional discontinuities. The surface under the dielectric
substrate is the ground plane.

walls. The two terminal planes at the input and output ports,
are denoted by S, and S, with boundaries C, and C,,
respectively. The side walls are denoted by S,. From
Maxwell's equations, we can readily show that the electric

field satisfies a curicurl equation, which can be transformed
into the weak form:
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where W, are the vector weighting functions, 7 represents

the surface normal to S, ko =27 f-./loEy, and f is the

excitation frequency. On the open surfaces, absorbing
boundary conditions [1] must be applied. Because of the
waveguiding nature of the guided wave structure, and the
evanescent behavior of the fields along the transverse
direction, different types of absorbing boundary conditions
should be used on the terminal planes and the side walls.
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First consider the two terminal planes, S, and .

Retaining only the dominant mode of E, since the higher
order modes are evanescent at the terminal planes, the
transverse part of the scattered electric field can be shown to
satisfy a first-order ABC ’
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where 7 is the propagation constant of the fundamental mode,
and the top and bottom signs refer to the output port ( S,) and

input port (S,), respectively. We can also define a second-
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order ABC for E;(F) which reads
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for a single mode, or
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for two modes where ¥ and y, are the wave numbers for
these modes. Alternatively, if the ABC is required to be valid
for a band of frequencies [2,3], then, for a single propagating
mode at the output port, we can use
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where y{l) and 7'%2) are the propagating constants of the

mode at frequencies f1 and fp, within the desired band.
The second-order z-derivative in the equations (3)
through (5) can be replaced by a transverse operator :
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where Vtz is the transverse part of V2. When (6) is

substituted into (1), the resulting expressions contain only
transverse derivatives. Upon integrating by parts, the second-

order transverse derivatives of E, and the first order

transverse derivatives of E, can be eliminated and the final
equation to be solved by FEM can be written as
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when the first-order ABC is used. Though not included here,
a similar equation can be derived for the second-order ABC as
well.

In addition to ABCs for the terminal planes, ABCs are
also needed on the side walls of the microstrip structure and
they are different from the ones given above. The tangential

component of V x E on the side walls can be expressed as

ﬁTXin‘z—%E;—+VTEn. ®)
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The normal derivative in (8) can be replaced by an evanescent,
first-order absorbing boundary condition

9 o
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A second-order ABC, for the side walls that takes into account
radiation from the discontinuities, takes the form

(% + a)(% N jkjﬁg(f) ~0.

The weak form is slightly modified when one of these side-
wall ABCs, given in (9) or (10), are incorporated in (7).

10)

NUMERICAL RESULTS

In this section, we provide illustrative numerical
results for two examples. The first of these is a dielectric post
discontinuity in a conventional rectangular waveguide, as
shown in Fig. 2. The dielectric post has a height equal to that
of the guide, b=0.5a, a width t{=0.524a, and a length
d=0.262a, where a is the width of the guide. The dielectric
constant of the post is 8.2-j0.006, and ! and r are the positions
where the ABCs are applied. The waveguide is excited with a
TE10 mode, whose field distribution and the propagation
constant are known. We consider a frequency range from 8 to
12 GHz. We introduce the ABCs at locations that are half the
waveguide width away, we choose, i.e., 1=r=0.5a. The
number of edges in the corresponding finite element mesh is
7138 including 2226 PEC edges. The magnitude of Sqy vs.
frequency is plotted in Fig. 3 for post length d=6, 12, 18mm,
and in Fig. 4 for post length d=9, 15, 21mm. The results for
d=6mm compare well with those reported in [4]. Because the
propagation constant in the empty guide is known precisely, a
first order ABC is found to be sufficiently accurate.

The second example considered is the junction of two
microstrips by an air or dielectric bridge, shown in Fig. 5. The
structure is assumed to be shielded and lossless. The
microstrip has dimensions a by 0.2a, where a is a scaling
factor. The substrate is GaAs with €,1=12.9. The bridge has a
longitudinal dimension d, with a dielectric constant of &,,.
Four different values of bridge dielectric constant, &£,,=1
(air), 2.32 (organic dielectric), 3.78 (quartz glass) and 9.8
(ceramic), and three different bridge lengths, d=3.17a, 6.35a
and 12.7a were considered. The purpose was to study the
scattering parameters using different bridge materials and
bridge lengths. The scaled frequency range under
consideration ranged from kpa=0.05 to kpa=3.5. If
a=]100pum, the actual frequency range was from 24 to 166
GHz. A first order ABC was used at a position l=r=10a.

Unlike the waveguide problem discussed earlier,
neither the propagation constant nor the incident field
distribution of the uniform microstrip line are known in closed
forms, and numerical procedures are needed to determine
them. To find the propagation constant § of the input and
output guides, which are identical in the present example, the
uniform microstrip line can be short-circuited at both ends,
and the resulting cavity problem solved to determine the
propagation constant 3 and the model field distribution of the
uniform line for a given frequency. However, this procedure



A centered dielectric post discontinuity in a rectangular
waveguide.

Figure 2.
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The magnitude of Sy; vs. frequency for the dielectric post
discontinuity problem with the length d=6mm, 12mm and
18mm. The dashed line is calculated by Uher et al [3].
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Figure 4.

is too costly, and we have developed a numerically-efficient
procedure, described in [6], to accomplish the same objective.

Figures 6, 7 and 8 show the magnitudes of Sy1 vs.
wave number kga with the values of the bridge dielectric

constant g,, as parameters, for bridge lengths d=3.17a, 6.35a
and 12.7a, respectively. The problem was solved for a total of
21 frequencies to generate each of the curves in the figures.
These results were found to compare well with those obtained
using the frequency domain finite difference method [5]. We
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Figure 5.  Junction between two microstrip lines formed by using an
air or dielectric bridge.
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Figure 6.  The magnitude of Sy vs. wave number koa with the values
of the bridge dielectric constant €, as parameters for bridge
length d=3.17a.
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Figure 7. The magnitude of S;; vs. wave number kpa with the values

of the bridge dielectric constant £,; as parameters for bridge
length d=6.35a.

note that one obtains improved matching for the junction for
kqa=0.05 to kya=0.2 when a ceramic bridge is used.
However, the introduction of a dielectric bridge causes two
resonances to occur, one of which has a band-stop property
while the other is of the band-pass type. Increasing the bridge
dielectric constant or length causes these resonant frequencies
to shift toward lower frequencies.
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Figure 8.  The magnitude of S| vs. wave number kga with the values

of the bridge dielectric constant €, as parameters for bridge
length d=12.7a.

CONCLUSIONS

In this paper we have discussed the problem of
incorporating first and second-order absorbing boundary
conditions in the finite element formulation to solve
discontinuity problems in guided wave structures. Numerical
results have been presented and have been shown to compare
favorably with the published data.
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